
Event-based Control as a Cloud Service

Alaa Eldin Abdelaal, Tamir Hegazy and Mohamed Hefeeda

Abstract— Event-based control has gained significant interest
from the research community in recent years because it allows
better resource utilization in networked control systems. In
this paper, we propose an architecture for offering event-based
control as a service from the cloud, which not only improves
resource utilization but also reduces the cost and setup time
of large-scale industrial automation systems. Providing event-
based control from the cloud, however, poses multiple research
challenges. We address two of the main challenges, which
are the network delays and failures introduced because of
moving the controller far away from the plant. We present
a delay mitigation technique that maintains the stability and
performance of the control system. Our results using com-
mercial clouds show that our delay mitigation technique can
handle large communication delays up to several seconds with
practically zero effect on the main performance metrics of the
system. Moreover, our proposed fault tolerance approach can
effectively handle network failures even if the controlled system
is thousands of miles away from its cloud controllers.

I. INTRODUCTION

The classical approach of control systems is based on
periodically performing the control actions even if there is
no real need for this; for example, when the system has
already reached the steady state. To better utilize the system
resources, event-based control has been proposed [1], [2].
Such approach can be useful especially when the control
system is deployed in resource-constrained environments.
In event-based control systems, the control action is only
performed when needed; for example when the error is
greater than some threshold.

Several researchers highlight the benefits of adopting the
event-based control approach especially the savings achieved
in both energy and network communication. For example,
Ploennigs et al. [3] show that this approach can save around
80% of the energy of devices in the context of building
automation and control systems.

On the other hand, cloud computing has the potential to
improve current automation and control systems. In a recent
survey, Kehoe et al. [4] highlight the increasing interest in
this area by showing the benefits of using cloud computing
for both higher and lower level control functionalities. For
this latter category, Hegazy and Hefeeda [5] perform a study
to calculate the potential savings in both cost and time
that can result from offering the control as a service from
the cloud. They conclude that for large–scale automation

This work is partially supported by the Natural Sciences and Engineering
Research Council (NSERC) of Canada.

Alaa Eldin Abdelaal and Mohamed Hefeeda are with the School
of Computing Science, Simon Fraser University, Burnaby, BC, Canada.
{alaa eldin abdelaal, mhefeeda}@sfu.ca

Tamir Hegazy is an independent scholar.
tamir.hegazy@gmail.com

systems, reductions up to 57% of the cost and up to 85%
of the start–up time can be achieved. The cost savings come
from replacing hardware devices like physical controllers and
control cabinets with virtual machines in the cloud and from
reducing the number of site visits required by engineers.
The time savings come from reducing the time required to
assemble and wire hardware devices together because many
of them are not needed. This also applies to the shipping time
of these devices from engineering locations to the location
of the automation system. Moreover, in the same study, the
authors highlight several benefits of the agility of the cloud
computing model to automation plants. For example, cloud
controllers can be deployed in different data centers for
different cloud providers which gives more flexibility to the
owners of automation systems to choose from a wider range
of options. In addition, the complexity of the automation
systems deployment is significantly reduced because of the
elimination of most of the wiring needed in the system.

In this paper, we propose providing event-based control
as a service from the cloud. Our motivation is not only to
better utilize the control system resources and save energy,
but also to realize the promising advantages of moving the
controllers to the cloud in terms of cost and time savings. In
order to get the most of these advantages, we have to address
multiple challenges including dealing with possible network
delays and failures that can affect the stability, performance
and reliability of the control system. In this work, we show
how the network delays and failures can be handled in such
a way that guarantees the stability and performance of the
event-based control system.

To this end, this paper makes the following contributions:
first, we propose a delay compensation technique to handle
network delays. Our technique employs a delay estimator
that feeds the system model with the values of the delay. We
show that using our technique does not violate the stability
guarantees of the controlled system. Second, we present
a fault tolerance technique that makes the system capable
of dealing with network failures. This is done by running
redundant controllers asynchronously on virtual machines
on the cloud that can be geographically far apart from one
another. Finally, we implement the proposed techniques in
an industry-standard system design software, LabVIEW [6],
and we deploy it on different locations of the Amazon
cloud. We show that the proposed cloud event-based control
service can effectively control distant real systems even under
variable Internet delays, and packet losses. Moreover, our
results show that up to 88% of the communication messages
between the plant and controller can be saved with no
noticeable degradation in the control system performance.

2017 American Control Conference
Sheraton Seattle Hotel
May 24–26, 2017, Seattle, USA

978-1-5090-5994-2/$31.00 ©2017 AACC 1017

In the rest of the paper, we discuss the related work
in Section II. In Section III, we present the event-based
cloud control model. Then, we present our approach to solve
the problem of network delays in Section IV, and failures
in Section V. We evaluate the proposed approach using
LabVIEW and Amazon cloud services in Section VI and
we conclude the paper in Section VII.

II. RELATED WORK

One of the early works that considers providing the control
functionality as a cloud service is [7]. In this work, Givehchi
et al. evaluate the approach of moving a Programmable
Logic Controller (PLC) to the cloud using a simple discrete
process that is, inverting an input signal. A similar study is
presented in [8], where the authors propose an architecture
for providing control as a service. However, this paper does
not discuss any strategy to mitigate the delays or failures.

In [9], Colombo et al. present a migration method from
a scan-based PLC to event-based Service Oriented Architec-
ture (SOA) system. They show that this is possible except
for the hard real-time control tasks. Vick et al. [10] identify
the motion control sub-tasks of an industrial robot and divide
them into soft and hard real time sub-tasks. Soft real time
sub-tasks are then moved to the cloud. The rest of the tasks,
like position, speed and current control of the robot are done
on site not on the cloud. However, the authors do not propose
any techniques to deal with network delays and failures. The
same limitation applies for the work in [11].

Didic et al. [12] test the feasibility of using the cloud in
closed loop control systems. They propose a delay mitigation
mechanism. However, their work is based on the periodic
control approach. Another delay compensation technique is
presented in [5]. The authors also proposed a distributed al-
gorithm to handle the failures in their proposed architecture.
Their methods show good performance when tested on a soft
real-time process from the industrial automation domain, but
again this work is based on the periodic control approach.

Based on our review of the event-based control literature,
we find that most of the works that addressed the delay
problem in the context of event-based control such as [13]
and [14], have a main drawback. Those works employ state
feedback assuming that full state information is available,
which is impractical. On the other hand, the works [15]
and [16] make more practical, yet conservative, assumptions,
which still limits the applicability of moving controllers to
the cloud. In [15], no packet losses or reordering is assumed.
In [16], a local controller is required, while in this paper, we
move the control functionality altogether to the cloud.

Just like the delay problem, most of the proposed methods
to solve the packet loss problem in the context of event-
based control are based on state-feedback such as [13] and
[17]. As far as we are concerned, only two works [18] and
[19] addressed this problem in the output-feedback case. In
[18], the authors assume that packet losses only occur in the
communication channel from the plant to the controller. The
other channel from the controller to the plant is assumed
to be a perfect one. A similar assumption is made in [19].

Controller Plant
 Event
generator

Error

Set point

Fig. 1: The structure of the event-based control system.

The authors target a class of denial of service (DoS) attacks.
However, the authors assume that the DoS attacks happen
only in the communication channel between the sensor and
the controller. In practice, this is not a realistic assumption
because packet losses can happen in either of the two
channels (from the controller to the plant and vice versa).

To the best of our knowledge, the work done in the area of
cloud automation with the goal of moving the control layer
functionality to the cloud is limited. Most of the previous
works can be considered as feasibility/pilot studies to explore
this area. Moreover, for event-based control, we are not
aware of any work that addresses the challenges of moving
the controllers to the cloud, especially handling the delays
introduced by the Internet and the control and link failures.

III. SYSTEM MODEL

A. Event-based Control Structure

The considered event-based control system structure [20]
is shown in Fig. 1. Solid lines in Fig. 1 represent time-
based communications and dashed lines represent event-
based ones. Moreover, in the presented structure the con-
troller itself is assumed to be a traditional time-based one.

The structure consists of a controller, plant and event
generator. The controller is assumed to be a PI controller
which is the most common in the industry [21], [22]. The
plant is assumed to be a First Order Process with Dead Time
(FOPDT) whose general transfer function is shown in (1)
where K is the process gain, T is the process time constant
and L is the process delay (dead time).

P (s) = (
K

Ts+ 1
)e−L. (1)

Higher order processes can be easily approximated to an
FOPDT process [23].

The third component of the event-based control structure is
the event generator. It is this component that characterizes the
system as an event-based one. The event generator receives
the process variable from the plant and compares it with
the set point to calculate an error value. It decides whether
the error should be sent back to the controller based on a
sampling algorithm. The used sampling algorithm is called
Symmetric Send on Delta (SSOD). In this algorithm, a
comparison is done between the current error and the last
one. If the absolute value of the difference between the two
errors is larger than a tunable parameter ∆, then the current
error value is approximated to the nearest multiple of ∆ and
sent to the controller. Otherwise, nothing is sent from the
event generator to the controller.

1018

The main reason for considering the above event-based
structure is that in [20] the authors provide the sufficient
conditions of the controller parameters that make the system
stable without having limit cycles.

B. Proposed Event-based Control Cloud Service

The proposed event-based control cloud service consists
of cloud controllers. These controllers are software modules
implementing event-based controllers, such as an event-based
version of the PID controller in [1] and [24]. Multiple mod-
ifications need to be done to handle Internet delays, packet
losses, and failures, and to ensure that the control-theoretic
performance guarantees are achieved. The controllers are
deployed on virtual machines (VMs) and multiple of them
can run on the same VM. Our proposed service makes use of
the control I/O interface which in many cases is embedded in
modern sensors/actuators at the controlled system side. The
control I/O interface communicates with the cloud controllers
by receiving control actions. These actions are then relayed to
actuators of the controlled system. The plant output is then
sent to the event generator which in turn decides whether
an event has occurred and consequently sends the sampled
error signal to the cloud controller. Most recent industrial
control I/O devices can communicate over standard Internet
protocols. For example, many I/O interfaces support an
industry-standard protocol called Modbus, which runs on top
of TCP [25]. Similar to HTTP, Modbus is an application-
level protocol used to send commands to read/write various
registers in the I/O device.

IV. PROPOSED DELAY COMPENSATION

We present our solution to the network-induced delay
problem in the case of event-based cloud control. The key
idea of our approach is that by moving the controller to
the cloud, the network delay problem can be reduced to
the problem of controlling an FOPDT process in an event-
based manner. This problem is solved in [20] in a way
that guarantees the stability of the control system. In our
approach, the dead time parameter of the FOPDT includes
the estimated network delays. Without reasonably accurate
estimation of these delays, the system response is likely to
exhibit overshoots and instability [26]. Therefore, an Internet
delay estimator is used to feed the system model with these
delays.

We start with the general structure of event-based control
as shown in Fig. 1. This structure can be rearranged and put
in the Z domain as in Fig. 2(a). Here, the plant block in
Fig. 1 is divided into two blocks; P (z) representing the first
term of the FOPDT model in eq. 1 and Z−m representing
the exponential term in the same model which refers to the
dead time. C(z) and V (z) represent the transfer functions
of the controller and the event generator, respectively.

By moving the controller to the cloud, network delays are
introduced between the event generator and the controller
on one hand and between the latter and the plant on the
other hand. These delays are added to the structure using
the blocks Z−k and Z−l as shown in Fig. 2(b), where

V(z)

Set point

C(z) P(z)
Z

-m

(a) The event-based control structure in Z domain.

V(z)

Set point

Z
-k C(z) Z

-l P(z) Z
-m

(b) Moving the controller to the cloud.

V(z)

Set point

C(z) P(z)
Z

-(k+l+m)

(c) Reducing the problem to the one solved in [20].

Fig. 2: The proposed approach to solve the delay problem.

Controller Plant
 Event

generator

Set PointMeasuring

 delay

Error

Internet Delay

 Estimator

Fig. 3: The proposed model after adding the Internet delay
estimator.

k and l represent the values of the delays. We alter the
arrangements of the blocks in the feedforward direction and
we can see in Fig. 2(c) that the delay problem is reduced
to the problem of controlling a first order process with dead
time. This is the same problem solved in [20]. The increase
in the delay effectively means increasing the dead time of the
process. This causes the settling time of the system response
to increase while the other performance metrics remain the
same as in original system.

Now, we propose adding an Internet delay estimator to
measure the Internet/network delay and consequently feed
the values of k and l to our model. The event-based cloud
control model after adding the Internet delay estimator is
shown in Fig. 3.

The Internet delay estimator estimates the roundtrip delay
between the controller and the plant using an exponentially
moving average for the network delay mean Di where i
represents the current discrete time instance. Similarly, the

1019

estimator employs another exponentially moving variance for
the delay variance Vi. Di and Vi are used to calculate the
delay value Dc according to:

Dc =
Di + hV 0.5

i

Ts
, (2)

where Ts is the sampling period and h is a positive parameter
used to adjust the system response in case of delays greater
than Di. Thus, delay compensation is performed by updating
the value of inherent delay block to include communication
delays.

V. PROPOSED FAULT TOLERANCE

In the proposed event-based cloud control service, various
types of failures may occur e.g., virtual machine crashes and
link failures. These types of failures will result in missing
packets between the controlled system and its controllers.
The basic idea to handle these failures in our system is by
deploying redundant controllers on different virtual machines
from different cloud locations. We assume that there are
multiple links connecting the plant to the Internet and at
least one of them remains up all the time.

The proposed solution for handling failures is based on
the Reliable Cloud Controller (RCC) algorithm proposed in
[5], which is designed for periodic control. We extend it
to support event-based control systems. The RCC algorithm
consists of 4 steps. The first one is the initialization. The
second is the polling step where the controllers receive the
information from the I/O interface. The third step is the
computing step where each controller computes its control
signal. Furthermore, in this step each controller decides
whether it will be the engaged controller. In the last step, the
conditional acting step, the engaged controller only sends
its control signal to the plant. The algorithm gives each
controller an ID such that the ID of the primary controller is
1 and the secondary controller’s ID is 2 and so on. Moreover,
each controller has a corresponding last action age variable.
Each one of these variables is reset to zero each time its
corresponding controller sends a control signal to the plant.
Otherwise, its value increases by one every sampling period.
Furthermore, each controller has an engagement threshold.
A controller becomes engaged if its engagement threshold is
lower than the last action ages of all other controllers whose
IDs are less than the ID of this controller.

The algorithm employs the bumpless transfer technique
from control theory [27] to achieve smooth handover be-
tween controllers. This is important for the system response
because redundant controllers may have different output
values. So, when a failure happens, the system response may
suffer from a bump due to the difference between the output
values of the newly engaged controller and the failed one.
In the case of using a PID controller, the bumpless transfer
is achieved by adjusting the integrator’s initial value [28].

We first show that by using the RCC algorithm, we address
the packet loss in the two communication channels; i.e.,
from the controller to the plant and from the sensor to the
controller. Consider the polling step of the RCC algorithm

while having two controllers, a primary and a secondary
(without loss of generality). If there is a timeout, meaning
that the message from the sensor to the primary controller
did not reach the controller, the primary controller goes
to the first step (the initialization step) without performing
the control logic. As a result, it will not send anything to
the plant. Therefore, The plant will increase the last action
age of the primary controller. Once this last action age
value reaches the engagement threshold of the secondary
controller, this latter will engage. So, this means that the “no
communication” state between the sensor and the controller
is handled using the polling step of the RCC. The other
“no communication” state between the controller and the
plant is also handled in a similar fashion. This highlights
the difference between our work and previous works in this
context. They deal only with one communication direction
(from sensors to the controller) but we deal with the other
as well (from the controller to the plant).

Applying the RCC as it is to our event-based structure can
lead to the following problem. When the primary controller
fails, the plant will use the primary controller's last control
signal as its input during the failure period of the primary
controller. As a result, the plant output will settle to an
intermediate value and hence the difference between the
current and last errors will be zero. So, the plant will not
send anything to the secondary controller whatsoever because
the event generator only generates an event if the difference
between the errors is greater than ∆. This means that the
secondary controller will never be engaged.

To address this problem, we generate regular events
(known as heartbeats) every n sampling periods in addition
to the original triggered events. These regular events will
only be generated if the time between two consecutive
triggered events is more than the period of sending those
regular events. In other words, if some time passes without
generating triggered events, then a regular event should be
generated. Otherwise, this time is reset to zero. Having done
this, when the primary controller fails as in the above case,
after some time passes, a regular event will be generated and
consequently the secondary controller will become engaged.

The worst–case scenario in our proposed approach is
when the triggering event condition is always false due to
the failure of the engaged controller. In such a case, the
plant operates only on the generated regular events until the
engagement of the standby controller.

In the following, we analyze the proposed fault tolerance
approach in more details considering the worst–case sce-
nario.

First, we note that as long as there is a healthy controller
and a working link between this controller and the plant, then
the normal operation of the plant is guaranteed. For example,
assume that there are more than one healthy controller with
working links between them and the plant. Until a new
regular event is generated, the last action age of more than
one controller may exceed the engagement thresholds of the
subsequent ones. So, when a regular event is generated, there
may be more than one controller that will be engaged at the

1020

same time. But, as long as the smooth handover is active,
the first control signal of all these newly engaged controllers
will be the same. Moreover, the controllers are sending their
control signals periodically to the plant. This means that
every sampling period, the last action age of each of those
controllers is reset to zero. So, when the next regular event
is generated, only the controller with the smallest ID will
continue working and the rest will go to the standby mode.

Next, we study the steady state error and overshoots in
the case of controller failures. If the original tuning of our
structure without failures leads to no overshoots or steady
state errors, then our proposed fault tolerance approach guar-
antees the same performance under failure as long as there is
at least one healthy controller. The reason is that, based on
the smooth handover in the double redundancy case (without
loss of generality), when the primary controller fails, the first
control signal of the secondary controller will be the same as
the one that the primary controller would have produced if it
did not fail. Moreover, the secondary controller when getting
engaged will produce the same sequence of control signals
as the ones that the primary would have produced if it did
not fail. This is because the control parameters in the primary
and secondary controllers are the same. Furthermore, during
the failure period of the primary controller, the plant input
will be the last received control signal sent by the primary
controller. So, during this period and before the engagement
of the secondary controller, the plant has the same input and
hence produces the same output. So, effectively the same
sequence of control signals will reach the plant but after
some delay. In other words, the packet loss problem can be
reduced to the problem of having the same packets reaching
the plant but after some delay.

This delay is finite, and has a known upper bound. This
upper bound (in the case of having double redundancy with-
out loss of generality) equals F+(D2+RTT2)/Ts-1 sampling
periods where F is the number of sampling periods before
generating a regular event, D2 is the engagement threshold
of the secondary controller, RTT2 is the round trip time
between the plant and the secondary controller, and Ts

is the sampling period of the plant. This delay means an
increase of the dead time parameter (L) in the FOPDT model.
This means that the only change in the response will be
a shift of the response by the amount of this delay. All
the other performance characteristics of the original signal
are preserved since the rest of the FOPDT parameters are
the same. Based on the above, the proposed fault tolerance
method will preserve the same performance measures of
the original response with no failures. However, there will
be an increase in the settling time. This increase is upper
bounded by the above mentioned formula when a single
failure happens in the system response.

Another note is that no change will occur in the system
response upon the recovery of a controller with lower ID than
the currently engaged controller. Without loss of generality,
consider the case when the secondary controller is engaged
and the primary controller recovers. Because of the smooth
handover, the first control signal of the primary controller

will be the same as the control signal of the secondary
controller. While waiting for a new event to be generated,
the two controllers will treat the last received output from
the plant as their input signal. As a result, the two controllers
will continue producing similar control signals because the
control parameters in the two controllers are the same.
During this waiting time, the two controllers send their
control signals every sampling period to the plant and hence
resetting their corresponding last action age variables. When
the plant generates a new event (either regular or triggered),
the secondary controller will go to the standby mode and
only the primary controller will be the engaged one.

Finally, we discuss the benefits of our fault tolerance
approach in terms of lower number of messages and hence
bandwidth savings and better network resource utilization.
To asses these savings, the ratio between the number of
messages required using our approach and the periodic one
will go to 1/n when time goes to infinity, where n is the
number of sampling periods that should pass until a regular
event is generated. So, for example, if the regular events are
generated every 10 sampling periods, then this ratio goes to
10%. This means that when time goes to infinity, the savings
in the bandwidth go to 90% compared with the traditional
periodic case.

VI. EVALUATION USING LABVIEW AND AMAZON
CLOUD

In this section, we evaluate the proposed event-based cloud
control approach using LabVIEW and Amazon cloud and
show how a simulated system performs using these ap-
proaches in the cases of having network delays and failures.

For the plant, we consider the speed control system of
a DC motor [29]. This system is chosen because it can be
found in many industrial automation plants. The motor is
a bidirectional brushless DC motor. Its rotation frequency
can reach up to 27,000 RPM. An analog servo drive is used
to control the motor. A tachometer is used to measure the
motor’s speed. The FOPDT model of this system is obtained
by using the area method [30]. The transfer function of this
system is approximated to the FOPDT process shown in:

P (s) = (
0.526

0.5402s+ 1
)e−2s. (3)

The DC motor system is emulated using LabVIEW and
deployed on a machine in our lab in Vancouver, Canada.
We use Amazon EC2 as our cloud provider. The PI pri-
mary controller is deployed on a virtual machine (VM) in
Singapore (more than 8,000 miles away from the plant).
The secondary controller is deployed on another VM in Sao
Paulo, Brazil (more than 6,000 miles away from the plant).
The communication between the plant and controllers is
done using Modbus over TCP protocol. The sampling period
of the simulated plant is equal to 300 milliseconds. If 10
sampling periods pass without generating triggered events,
then a regular event will be generated.

To evaluate the proposed fault tolerance method, we feed
the system with a step input at time t=0 s. At this time the

1021

0 50 100 150 200 250 300

Time (s)

0

0.5

1

1.5

S
y
st
em

R
es
p
on

se
With Smooth Handover

Without Smooth Handover

Fig. 4: The System response using the fault tolerance algo-
rithm with the smooth handover enabled and disabled.

primary controller is engaged while the secondary controller
is in standby mode. We then fail the primary controller
by disconnecting it during the transient state of the system
response at t= 30 s. After that, we restart the primary
controller again after the system reaches the steady state at t=
135 s. The normalized system response during this process
is as shown in the blue (solid) curve in Fig. 4. We can see
that despite the failure of the primary controller, the system
response acts as if there were no failure.

To show the importance of the smooth handover method,
we repeat the above experiment after disabling this method.
The red (dashed) curve in Fig. 4 shows that at the time of
handover between the two controllers there is a bump in the
response. These bumps are highly undesirable in practice.
Furthermore, enabling the smooth handover method reduces
the number of generated events. In our results, the number of
generated events without the smooth handover method (166
events on average) is about 42% more than the number of
generated events when using it (117 events on average). This
shows another reason why smooth handover is critical in the
context of event-based cloud control.

Another note here is the savings achieved in the event-
based case compared to the periodic one. So, during 1000
sampling periods and when disabling the smooth handover
functionality, our event-based approach needs only 16.6%
on average of the messages in the periodic case even with
the additional events required to overcome the bumps in
the response. When the smooth handover is enabled, our
approach only needs 11.7% on average of the messages in
the periodic case, meaning that our approach saves more than
88% of the bandwidth in this case.

To show the extensibility of the fault tolerance approach,
we test the case of having three redundant controllers; a
primary controller in a VM in Oregon, the United States
(about 500 miles away from the plant in Vancouver, Canada),
a secondary controller in a VM in Singapore and a tertiary
controller in a VM in Sau Paulo, Brazil. We start with having
the primary controller as the engaged controller while the
others are in the standby mode. We then fail the primary and
secondary controllers at time t= 30 s. The tertiary controller
takes the lead. We then restart the secondary controller at
t= 90 s and then the primary controller at t= 135 s. Fig. 5

0 50 100 150 200 250 300

Time (s)

0

0.5

1

1.5

S
y
st
em

R
es
p
o
n
se

Fig. 5: The System response using the fault tolerance al-
gorithm with smooth handover enabled while having three
redundant controllers.

0 50 100 150

Time (s)

0

0.5

1

1.5

S
y
st
em

R
es
p
on

se

No Delays

First Delay Distribution

Second Delay Distribution

Fig. 6: System response under three delay distributions.

shows that despite those failure and recovery processes, the
plant response achieves almost smooth set point tracking.

To stress-test our approach of handling network delays
under the same testing setup described above, we use Mi-
crosoft’s Network Emulator For Windows Toolkit [31] to add
additional emulated delays to the existing real network de-
lays. The added delays follow the normal distributions which
are characterized by the mean µ and standard deviation σ.
We use two delay normal distributions, the first one has µ= 1
s and σ= 0.7 s, and the second one has µ= 2 s and σ= 1.4 s.
The added delays include both channels from the controller
to the plant and vice versa. Moreover, it is important to note
that with large delay values, packets can be received out of
order at the destination or even lost. In our solution, since we
use Modbus over TCP protocol, lost packets are resent and
TCP ensures the re-ordering of out-of-order ones. However,
a challenging situation happens because several packets can
be transmitted at the same time to the plant. In this case, the
plant executes only the last packet and discards the rest.

Fig. 6 shows the system responses in three cases. The
blue (solid) curve shows the system response without adding
emulated delays while the red (dashed) and orange (dotted)
curves show the system response under the first and second
delay normal distributions, respectively. The figure shows
that the three curves are almost the same when it comes to
steady state errors and overshoots. The difference between
them is that the settling time increases with the increase of
the added delay.

Table I compares the three responses based on overshoots,
steady state error, settling time (that is, the time required

1022

TABLE I: Performance measures of the DC Motor speed
control system under different delay normal distributions.

Delay Normal
Distribution (s)

Overshoots? Settling
time (s)

Steady
State
Error

Number
of
Events

No emulated de-
lay

No 63.9 s No 70

µ= 1 s and σ=
0.7 s

No 65.4 s No 71

µ= 2 s and σ=
1.4 s

No 70.5 s No 71

to stay within 5% of the final value) and the number of
generated events (during 500 sampling periods) in each case.
We can notice here that even under emulated network delays
more than 10 times the sampling period of the plant, the
system did not overshoot or deviate from its final value.

VII. CONCLUSION

In this paper, we introduced event-based control as a cloud
service. Although previous works in the literature discussed
this idea, none of them provided a way to deal with the large
induced delay values and network failures that occur due to
moving the event-based controllers to the cloud. We showed
how the delay problem can be reduced to the problem of
controlling a process with dead time. We presented our
model of event-based cloud control systems which included
an Internet delay estimator. We showed how our model
solved the delay problem in such a way that guaranteed the
system stability. We evaluated the proposed approach under
a wide range of delay values and our results showed the
robustness of the proposed approach. We also presented an
approach to deal with network failures and packet losses. Our
results showed the validity of our approach even if the cloud
controllers were thousands of miles away from the controlled
plant.

REFERENCES

[1] K.-E. Årzén, “A simple event-based PID controller,” in Proc. of IFAC
World Congress, Beijing, P.R. China, January 1999, pp. 423–428.

[2] K. J. Åström and B. Bernhardsson, “Comparison of riemann and
lebesque sampling for first order stochastic systems,” in Proc. of IEEE
Conference on Decision and Control, (CDC’02), vol. 2, Las Vegas,
NV, December 2002, pp. 2011–2016.

[3] J. Ploennigs, V. Vasyutynskyy, and K. Kabitzsch, “Comparative study
of energy-efficient sampling approaches for wireless control net-
works,” IEEE Transactions on Industrial Informatics, vol. 6, no. 3,
pp. 416–424, August 2010.

[4] B. Kehoe, S. Patil, P. Abbeel, and K. Goldberg, “A survey of research
on cloud robotics and automation,” IEEE Transactions on Automation
Science and Engineering, vol. 12, no. 2, pp. 398–409, April 2015.

[5] T. Hegazy and M. Hefeeda, “Industrial automation as a cloud service,”
IEEE Transactions on Parallel and Distributed Systems, vol. 26,
no. 10, pp. 2750–2763, October 2015.

[6] “Why Use LabVIEW?” http://www.ni.com/white-paper/8536/en,
March 2009.

[7] O. Givehchi, J. Imtiaz, H. Trsek, and J. Jasperneite, “Control-as-a-
service from the cloud: A case study for using virtualized plcs,”
in Proc. of IEEE Workshop on Factory Communication Systems
(WFCS’14), Toulouse, France, May 2014, pp. 1–4.

[8] T. Goldschmidt, M. Murugaiah, C. Sonntag, B. Schlich, S. Biallas,
and P. Weber, “Cloud-based control: A multi-tenant, horizontally
scalable soft-plc,” in Proc. of IEEE International Conference on Cloud
Computing (CLOUD’15), New York City, NY, June 2015, pp. 909–
916.

[9] A. W. Colombo, T. Bangemann, S. Karnouskos, J. Delsing, P. Stluka,
R. Harrison, F. Jammes, and J. L. Martı́nez Lastra, Industrial Cloud-
Based Cyber-Physical Systems. Springer, 2014.

[10] A. Vick, V. Vonasek, R. Penicka, and J. Kruger, “Robot control
as a service: Towards cloud-based motion planning and control for
industrial robots,” in Proc. of IEEE International Workshop on Robot
Motion and Control (RoMoCo’15), Poznan, Poland, July 2015, pp.
33–39.

[11] A. Vick, C. Horn, M. Rudorfer, and J. Kruger, “Control of robots and
machine tools with an extended factory cloud,” in Proc. of IEEE World
Conference on Factory Communication Systems (WFCS’15), Palma de
Mallorca, Spain, May 2015, pp. 1–4.

[12] A. Didic and P. Nikolaidis, “Real-time control in industrial IoT,”
Master’s thesis, Malardalen University, Sweden, 2015.

[13] D. Lehmann and J. Lunze, “Event-based control with communication
delays and packet losses,” International Journal of Control, vol. 85,
no. 5, pp. 563–577, 2012.

[14] F. Forni, S. Galeani, D. Nešić, and L. Zaccarian, “Event-triggered
transmission for linear control over communication channels,” Auto-
matica, vol. 50, no. 2, pp. 490–498, 2014.

[15] X.-M. Zhang and Q.-L. Han, “Event-based dynamic output feedback
control for networked control systems,” in Proc. of American Control
Conference, (ACC’13), Washington, DC, June 2013, pp. 3008–3013.

[16] H. Yu and P. J. Antsaklis, “Event-triggered output feedback control
for networked control systems using passivity: Achieving l2 stability
in the presence of communication delays and signal quantization,”
Automatica, vol. 49, no. 1, pp. 30–38, 2013.

[17] V. Dolk and W. Heemels, “Dynamic event-triggered control under
packet losses: The case with acknowledgements,” in Proc. of Inter-
national Conference on Event-based Control, Communication, and
Signal Processing (EBCCSP’15), Krakow, Poland, June 2015, pp. 1–7.

[18] A. Cetinkaya, H. Ishii, and T. Hayakawa, “Event-triggered output
feedback control resilient against jamming attacks and random packet
losses,” Proc of. IFAC-PapersOnLine, vol. 48, no. 22, pp. 270–275,
September 2015.

[19] V. Dolk, P. Tesi, C. De Persis, and W. Heemels, “Output-based event-
triggered control systems under denial-of-service attacks,” in Proc. of
IEEE Conference on Decision and Control (CDC’15), Osaka, Japan,
December 2015, pp. 4824–4829.

[20] M. Beschi, S. Dormido, J. Sanchez, and A. Visioli, “Characterization
of symmetric send-on-delta PI controllers,” Journal of Process Con-
trol, vol. 22, no. 10, pp. 1930–1945, December 2012.

[21] A. O’Dwyer, Handbook of PI and PID controller tuning rules.
Imperial College Press, 2009, vol. 57.

[22] K. J. Åström and T. Hägglund, “The future of PID control,” Control
engineering practice, vol. 9, no. 11, pp. 1163–1175, November 2001.

[23] ——, Advanced PID control. ISA-The Instrumentation, Systems, and
Automation Society; Research Triangle Park, NC 27709, 2006.

[24] V. Vasyutynskyy and K. Kabitzsch, “Implementation of pid controller
with send-on-delta sampling,” in Proc. of International Conference
Control, Glasgow, Scotland, UK, August 2006.

[25] “Introduction to Modbus TCP/IP (white paper),” http://www.acromag.
com/sites/default/files/Acromag Intro ModbusTCP 765A.pdf, 2005.

[26] E. Fridman, Introduction to time-delay systems: Analysis and control.
Springer, 2014.

[27] J. D. Bendtsen, J. Stoustrup, and K. Trangbæk, “Bumpless transfer
between advanced controllers with applications to power plant con-
trol,” in Proc. of IEEE Conference on Decision and Control (CDC’03),
vol. 3, Maui, Hawaii, December 2003, pp. 2059–2064.

[28] H. Wade, Basic and Advanced Regulatory Control: System Design and
Application, 2nd ed. Research Triangle Park, North Carolina, USA:
ISA, 2004.

[29] Á. Ruiz, J. E. Jiménez, J. Sánchez, and S. Dormido, “Design of event-
based PI-P controllers using interactive tools,” Control Engineering
Practice, vol. 32, pp. 183–202, November 2014.

[30] A. Visioli, Practical PID control. Springer Science & Business
Media, 2006.

[31] “Network Emulator For Windows Toolkit,” https://blog.mrpol.nl/2010/
01/14/network-emulator-toolkit/.

1023

